
DIAMANTE NET

Reimagining the
Future of Finance

White Paper

Diamante Net by DiamCircle is a hybrid
ecosystem with affinity towards digital
finance. Discover, build and fuel today’s
innovations for tomorrow’s digital
infrastructure.

© 2024 Diamante Financial Technologies. All Rights Reserved. www.diamcircle.com

https://diamcircle.com/

© 2024 Diamante Financial Technologies. All Rights Reserved.

Index

01 01Diamante Net

03 Summary 04

05 List of References 26

02 The Set of Activities in Scope 02

04 PayCircle and CreditCircle
on the Diamante Net 23

www.diamcircle.com

https://diamcircle.com/

01

Diamante Net

The following literature is concerned with the
Infrastructure setup-Core and Horizon Server Setup,
Integration of API, a creation of digital asset, Client
App Integration. The implementation phase will be

carried out for the defined activities as mentioned in
this document.

© 2024 Diamante Financial Technologies. All Rights Reserved. www.diamcircle.com

https://diamcircle.com/

© 2024 Diamante Financial Technologies. All Rights Reserved. 02

THE SET OF ACTIVITIES

IN SCOPE

Setting up Diamante Node (Test-Net & Main-Net)

Create Trustline

Creating Federated IDs

Create Side-chains

Deploying dApps Using Aurora Services

Managing Multi-Signatures

Setup Wallet

Overview
Introspecting into deeper aspects of Diamante
Network which follows the pseudonymous
Blockchain Architecture thus supporting both the
privately-held Blockchain ecosystem as well
Decentraliez system. A decentralized network
consists of peers that can run independent of each
other. The power to transmit information is
distributed among a network of servers, instead of
being driven from one primary source. This means
that the Diamante Network is independent of
multiple entities and work on a single entity. The
idea is to have as many independent servers
participate in the network as possible so that the
network will still run successfully even if some
servers fail. The ledger within Diamante Network
records lists of all the balances and transaction in a
similar way to that of the traditional ledger. A
complete copy of the individual ledger is hosted on
each server that runs Diamante Net. Any entity can
run a Diamante Net server. The servers all together
form a decentralized network, allowing the ledgers
to be distributed as much as possible.

The server’s sync and validate the ledger by
consensus mechanism. The servers communicate
and sync with each other to ensure that
transactions are valid and get applied successfully
to the global ledger. This entire process of coming
to a consensus on this network occurs
approximately every 3-5 seconds, which is a real-
time settlement of the assets. The real- time
settlement occurs with any of the assets present on
the Blockchain network (Cachin et.al. 2017). The
assets can be the Diamante Network Native asset-
DIAM, Fiat Currencies, USD, EUR,
Cryptocurrencies like BTC, ETH etc. and Central
Bank issued cryptocurrencies.

www.diamcircle.com

https://diamcircle.com/

Anchors do two things:

People can receive any
currency through an anchor
they added. Here are a few
possible ways the
transaction can happen:

• They take the deposit and issue the corresponding
credit to the individual’s account address on the
Diamante Network ledger.
 

 • One can make a withdrawal by bringing them
credit they issued.

• The network finds an offer on the internal USD/
AED exchange for someone wanting to buy AED
for USD and automatically makes the exchange
between the two parties.

• Using DIAM as an intermediary currency,
Diamante Network will look for offers on the
network asking for USD in exchange for DIAM (the
native — purely digital — currency). It will
simultaneously look for an offer asking for DIAM in
exchange for AED. The network makes those
exchanges and sends beneficiary the credit.

One has to trust the anchor to honor their deposits
and withdrawals of credit it has issued. Anchors
exist in the traditional payment system. For
example, to use a wallet, you deposit money in
from your bank account, prefunding. The wallet
then gives you credit the wallet. You can now send
that wallet credit to anyone that trusts the wallet,
anyone who trusts the wallet. Someone that
received your wallet credit can convert it to fiat
money using the wallet by withdrawing it to the
bank.

If there is no explicit relationship between offers to
buy and sell, Diamante Network tries to find offers
from the network that will lead a chain of
conversions from AED to USD. For example, AED
to AUD, AUD to BTC, BTC to XLM, XLM to USD.

If there is no explicit relationship between offers to
buy and sell, Diamante Network tries to find offers
from the network that will lead a chain of
conversions from AED to USD. For example, AED
to AUD, AUD to BTC, BTC to XLM, XLM to USD.

The Anchors play an important role in Diamante
Network. Anchors are simply entities that people
trust to hold their deposits and issue credits into the
Diamante Network for those deposits. They form a
bridge between different currencies and the
Diamante Network. All money transactions in this
network occur in the form of credit issued by
anchors.

The Diamante Network ledger is able to store
offers that people have made to buy or sell
currencies. Offers are public commitments to
exchange one type of credit for another at a
predetermined rate. The ledger becomes a global
marketplace for offers. These offers are defined to
what is known as order book. There is an order
book for each currency/issuer pair. For instance, if
you are wanting to exchange Commerz Bank-EUR
for Bitstamp-BTC you should look at the particular
order.

book in the ledger to see what people are buying
and selling it for. This allows people to not only buy
and sell currencies in a way as the authorized
dealers work but also to convert currencies
seamlessly during transactions. This network also
allows you to send any currency you hold to anyone
else in a different currency through the built-in
distributed exchange.

03© 2024 Diamante Financial Technologies. All Rights Reserved. www.diamcircle.com

https://diamcircle.com/

SUMMARY
The Diamante Network is the decentralized
network which facilitates the transaction on a real-
time basis with a visibility on the documentation on
a real-time basis. The distributed ledger
technology makes the documents sharing more
transparent and secured.

The transactions which involved a lot of trusted
parties and documents can be transacted
Blockchain technology.

FBA, a crucial part of Diamante Blockchain is the
first provably safe consensus mechanism to enjoy
four key properties simultaneously:

Anyone is able to participate and no central
authority dictates whose approval is required for
consensus (Pires 2017).

In practice, nodes can reach consensus at
timescales humans expect for web or payment
transactions—i.e., a few seconds at most.

Users have the freedom to trust any combination
of parties they see fit. For example, a small non-
profit may play a key role in keeping much larger
institutions honest.

Safety rests on digital signatures and hash families
whose parameters can realistically be tuned to
protect against adversaries with unimaginably vast
computing power.

Technical Specifications of
the Diamante Network

Decentralized control

Low latency

Flexible trust

Asymptotic security

Diamante Blockchain Consensus
Mechanism
Unlike non-federated Byzantine agreement,
federated Byzantine agreement (FBA) addresses
the problem of updating replicated state, such as a
transaction ledger or certificate tree (Adya et. al.
2012). By agreeing on what updates to apply,
nodes avoid contradictory, irreconcilable states.
We identify each update by a unique slot from
which inter�update dependencies can be inferred.
For instance, slots may be consecutively numbered
positions in a sequentially applied log. A
mandatory to mention here, is the glossary of
notations that one might need to go through,
before diving into the realm of FBA. The picture
below must be referred to:

04© 2024 Diamante Financial Technologies. All Rights Reserved. www.diamcircle.com

https://diamcircle.com/

A Glossary of Terms in FBA

05© 2024 Diamante Financial Technologies. All Rights Reserved.

iff An abbreviation of “if and only if”

f (x) functon The result of calculating function f on argument x

ā Complement An overbar connotes the opposite, i.e., ā is the opposite of a

{a1,...,an} tuple A structure (Compound value) with field values a1,...,an

A Λ B logical and Both A and B are true

A B logical or At least one, possibly both, of A and B are true

 Λ

there exists There is at least one value e for which condition C(e) is true.e, C(e)

for all C(e) is true of every value e.

{a,b,...} set A set containing the listed elements (a,b,...)

{e l C(e)} set-builder The set of all elements e for which C(e) is true

ø empty set The set containing no elements

l S l Cardinality The number of elements in set S

e ∈ S element of Element e is a member of set S

A B subset Every member of set A is also a member of set B.
U

__

Strict subset A B and A B.

U

__ __
__

2A powerset The set of sets containing every possible combination of

members of A, i.e., 2A = {B l B A}

U

__

A B intersection The set containing all elements that are members of both A

and B, i.e.,A B = {e|e A e B}

U
U Λ

A U B union The set containing all elements that are members of A or

members of B, i.e.,A U B = {e|e A e B}

 Λ

A \ B set difference The set containing every element of A that is not a member

of B,i.e., A\B={e|e A e B}

 Λ

/ not Negates a symbol’s meaning. E.g., e A means e A is false,

while e,C(e) means no e exists such that C(e) is true.

e, C(e)

A
A B

U
__
__

www.diamcircle.com

https://diamcircle.com/

An FBA system runs a consensus protocol that
ensures nodes agree on slot contents. A node v can
safely apply update x in slot i when it has safely
applied updates in all slots upon which i depends
and, additionally, it believes all correctly
functioning nodes will eventually agree on x for
slot i. At this point, we say v has externalized x for
slot i. The outside world may react to externalized
values in irreversible ways, so a node cannot later
change its mind about them.

A challenge for FBA is that malicious parties can
join many times and outnumber honest nodes.
Hence, traditional majority �based quorums do not
work. Instead, FBA determines quorums in a
decentralized way, by each node selecting what
we call quo- rum slices. The next subsection
defines quorums based on slices. The following
subsection provides some examples and
discussion. Finally, we define the key properties of
safety and liveness that a consensus protocol
should hope to achieve.

In a consensus protocol, nodes exchange
messages asserting statements about slots. We
assume such assertions cannot be forged, which
can be guaranteed if nodes are named by public
key and they digitally sign messages. When a node

hears a sufficient set of nodes assert a statement,
it assumes no functioning node will ever contradict
that statement. We call such a sufficient set a
quorum slice, or, more concisely, just a slice. To
permit progress in the face of node failures, a
node may have multiple slices, any one of which is
sufficient to convince it of a statement (Stellar.org,
2019). At a high level, then, an FBA system consists
of a loose confederation of nodes each of which
has chosen one or more slices.

Quorum slices

A federated Byzantine agreement system, or FBAS,
is a pair (V,Q) comprising a set of nodes V and a
quorum function QV⊆ 22v \{0} specifying one or
more quorum slices for each node, where a node
belongs to all of its own quorum slices—i.e., Vv E V,
Vq E Q(v), v E q. (Note 2X denotes the power set of
X.).

Definition (FBAS)

A set of nodes U ⊆ V in FBAS (V, Q) is a quorum iff U ≠
 0 and U contains a slice for each member—i.e.,

Vv E U, 3q E Q(v) such that q ⊆ U. A quorum is a set
of nodes sufficient to reach agreement. A quorum
slice is the subset of a quorum convincing one
particular node of agreement. A quorum slice may
be smaller than a quorum. Consider the four-node
system in Figure 2, where each node has a single
slice and arrows point to the other members of that
slice. Node v1’s slice {v1, v2, v3} is sufficient to
convince v1 of a statement. But v2’s and v3’s slices
include v4, meaning neither v2 nor v3 can assert a
statement without v4’s agreement. Hence, no
agreement is possible without v4’s participation,
and the only quorum including v1 is the set of all
nodes {v1, v2, v3, v4}.

Definition (quorum)

06© 2024 Diamante Financial Technologies. All Rights Reserved.

v4

v1

v3v2

Fig.2. v1’s quorum slice is not a quorum without v4

Q.v1/=∧ Λ Λ v1; v2 ; v3”

Q.v2/= Q.v3/ = Q.v4/= v2; v3; v4”

Top tier: slice is 3 out of

{v1,v2,v3,v4}, including self

Middle tier: slice is self + any

2 top tier nodes

Leaf tier: slice is self + any

2 middle tier nodes

2/4

3/4

2/4

v1 v3v2 v4

v5 v7v6 v8

v9 v10

Figure 3: Tiered quorum structure example

www.diamcircle.com

https://diamcircle.com/

Traditional, non-federated Byzantine agreement
requires all nodes to accept the same slices,
meaning Vv1, v2, Q(v1) = Q(v2). Because every
member accepts every slice, traditional systems do
not distinguish between slices and quorums. The
downside is that membership and quorums must
somehow be preordained, precluding open
membership and decentralized control. A
traditional system, such as PBFT, typically has 3f + 1
nodes, any 2f + 1 of which constitute a quorum.
Here f is the maximum number of Byzantine failures
—meaning nodes acting arbitrarily— the system
can survive (Stolz and Wattenhofer 2016).

FBA, introduced by this paper, generalizes
Byzantine agreement to accommodate a greater
range of settings. FBA’s key innovation is enabling
each node v to choose its own quorum slice set Q(v).
System-wide quorums thus arise from individual
decisions made by each node. Nodes may select
slices based on arbitrary criteria such as reputation
or financial arrangements. In some settings, no
individual node may have complete knowledge of
all nodes in the system, yet consensus should still be
possible.

Figure 3 shows an example of a tiered system in
which different nodes have different slice sets,
something possible only with FBA. A top tier,
comprising v1, … , v4, is structured like a PBFT
system with f = 1, meaning it can tolerate one
Byzantine failure so long as the other three nodes
are reachable and well-behaved. Nodes v5, … , v8
constitute a middle tier and depend not on each
other, but rather on the top tier. Only two top tier
nodes are required to form a slice for a middle tier
node. (The top tier assumes at most one Byzantine
failure, so two top tier nodes cannot both fail unless
the whole system has failed.) Nodes v9 and v10 are
in a leaf tier for which a slice consists of any two
middle tier nodes. Note that v9 and v10 may pick
disjoint slices such as {v5, v6} and {v7, v8};
nonetheless, both will indirectly depend on the top
tier.

In practice, the top tier could consist of anywhere
from four to dozens of widely known and trusted
financial institutions. As the size of the top tier
grows,

there may not be exact agreement on its
membership, but there will be significant overlap
between most parties’ notions of top tier.
Additionally, one can imagine multiple middle tiers,
for instance one for each country or geographic
region.

This tiered structure resembles interdomain
network routing. The Internet today is held
together by individual peering and transit
relationships between pairs of networks. No
central authority dictates or arbitrates these
arrangements. Yet these pair- wise relationships
have sufficed to create a notion of de facto tier
one ISPs. Though Internet reachability does suffer
from firewalls, transitive reachability is nearly
complete—e.g., a firewall might block The New
York Times, but if it allows Google, and Google can
reach The New York Times, then The New York
Times is transitively reachable. Transitive
reachability may be of limited utility for web sites,
but it is crucial for consensus; the equivalent
example would be Google accepting statements
only if The New York Times does.

Another example not possible with centralized
consensus is cyclic dependency structures, such as
the one depicted in Figure 4. Such a cycle is unlikely
to arise intention- ally, but when individual nodes
choose their own slices, it is possible for the overall
system to end up embedding dependency cycles.
The bigger point is that, compared to traditional
Byzantine agreement, an FBA protocol must cope
with a far wider variety of quorum structures.

Examples and Discussion

Figure 4: Cyclic quorum structure example

v1

v4

v2

v3

v6

v5

Q(v i) = {{v i,v(i mod 6) + 1}}

07© 2024 Diamante Financial Technologies. All Rights Reserved. www.diamcircle.com

https://diamcircle.com/

We call well-behaved nodes that enjoy both safety
and liveness correct. Nodes that are not correct
have failed. All ill-behaved nodes have failed, but a
well-behaved node can fail, too, by waiting
indefinitely for messages from ill-behaved nodes,
or, worse, by having its state poisoned by incorrect
messages from ill-behaved nodes.

Figure 5 illustrates the possible kinds of node
failure. To the left are Byzantine failures, meaning
the ill-behaved nodes. To the right are two kinds of
well-behaved but failed nodes. Nodes that lack
liveness are termed blocked, while those that lack
safety are termed divergent. An attack violating
safety is strictly more powerful than one violating
only liveness, so we classify divergent nodes as a
subset of blocked ones. Our definition of liveness is
weak in that it says a node can externalize new
values, not that it will. Hence, it admits a state of
perpetual preemption in which consensus remains
forever possible, yet the network continually
thwarts it by delaying or reordering critical
messages in just the wrong way. Perpetual
preemption is inevitable in a purely asynchronous,
deterministic system that survives node failure.
Fortunately, preemption is transient. It does not
indicate node failure, because the system can
recover at any time. Protocols can mitigate the
problem through randomness or through realistic
assumptions about message latency. Latency
assumptions are more practical when one would
like to limit execution time or avoid the trusted
dealers often required by more efficient
Randomized algorithms. Of course, only
termination and not safety should depend upon
message timing.

We categorize nodes as either wellbehaved or ill-
behaved. A well-behaved node chooses sensible
quorum slices (discussed further in Section 4.1) and
obeys the protocol, including eventually
responding to all requests. An ill-behaved node
does not. Ill-behaved nodes suffer Byzantine
failure, meaning they behave arbitrarily. For
instance, an ill- behaved node may be
compromised, its owner may have maliciously
modified the software, or it may have crashed.

 The goal of Byzantine agreement is to ensure that
well-behaved nodes externalize the same values
despite the presence of such ill-behaved nodes.
There are two parts to this goal. First, we would
like to prevent nodes from diverging and
externalizing different values for the same slot.
Second, we would like to ensure nodes can actually
externalize values, as opposed to getting blocked
in some dead-end state from which consensus is
no longer possible. We introduce the following two
terms for these properties:

A set of nodes in an FBAS enjoy safety if no two of
them ever externalize different values for the
same slot.

A node in an FBAS enjoys liveness if it can
externalize new values without the participation of
any failed (including ill-behaved) nodes.

Safety and liveness

Definition (safety)

Definition (liveness)

Optimal Resilience
Whether or not nodes enjoy safety and liveness
depends on several factors: what quo- rum slices
they have chosen, which nodes are ill-behaved, and
of course the concrete consensus protocol and
network behavior. As is common for asynchronous
systems, we assume the network eventually delivers
messages between well-behaved nodes, but can
otherwise arbitrarily delay or reorder messages.
This section answers the following question: given a
specific (V, Q) and particular subset of V that is ill-
behaved, what are the best safety and

08© 2024 Diamante Financial Technologies. All Rights Reserved.

Figure 5: Venn diagram of node failures

Correctdivergentblocked

Byzantine,

including

crashed

Failed

Wel-behavedill-behaved

Correct

www.diamcircle.com

https://diamcircle.com/

liveness that any federated Byzantine agreement
protocol can guarantee regardless of the network?
We first discuss quorum intersection, a property
without which safety is impossible to guarantee.
We then introduce a notion of dispensable sets—
sets of failed nodes in spite of which it is possible to
guarantee both safety and li.

A protocol can guarantee agreement only if the
quorum slices represented by function Q satisfy a
validity property we call quorum intersection. No
protocol can guarantee safety in the absence of
quorum intersection, since such a configuration
can operate as two different FBAS systems that do
not exchange any messages. However, even with
quorum intersection, safety may be impossible to
guarantee in the presence of ill-behaved nodes.
Compare Figure 6, in which there are two disjoint
quorums, to Figure 7, in which two quorums
intersect at a single node v7, and v7 is ill-behaved.
If v7 makes inconsistent statements to the left and
right quorums, the effect is equivalent to disjoint
quorums. In fact, since ill-behaved nodes
contribute nothing to safety, no protocol can
guarantee safety without the well-behaved nodes
enjoying quorum intersection on their own. After
all, in a worst-case scenario for safety, ill-behaved
nodes can just always make any possible
(contradictory) statement that completes a
quorum. Two quorums overlapping only at ill-
behaved nodes will again be able to operate like
two different FBAS systems thanks to the duplicity
of the ill-behaved nodes. In short, FBAS (V, Q) can
survive Byzantine failure by a set of nodes B ⊆ V if
(V, Q) enjoys quorum intersection after deleting
the nodes in B from V and from all slices in Q. More
formally:

Quorum Intersection

Definition

(quorum intersection)

Definition (delete).

An FBAS enjoys quorum intersection if any two of
its quorums share a node—i.e., for all quorums U1
and U2, U1 ∩ U2 ≠ 0.

Figure 6 illustrates a system lacking quorum
intersection, where Q permits two quo- rums, {v1,
v2, v3} and {v4, v5, v6}, that do not intersect.
Disjoint quorums can independently agree on
contradictory statements, undermining system-
wide agreement. When many quorums exist,
quorum intersection fails if any two do not
intersect. For example, the set of all nodes {v1, … ,
v6} in Figure 6 is a quorum that intersects the other
two, but the system still lacks quorum intersection
because the other two do not intersect each other

If (V, Q) is an FBAS and B ⊆ V is a set of nodes, then
to delete B from (V, Q), written (V, Q) B means to
compute the modified FBAS (V \ B, QB) where QB
(v) = {q \ B I q ∈ Q (v)}. It is the responsibility of each
node v to ensure Q(v) does not violate quorum
inter- section. One way to do so is to pick
conservative slices that lead to large quorums. Of
course, a malicious v may intentionally pick Q(v) to
violate quorum intersection. But a malicious v can
also lie about the value of Q(v) or ignore Q(v) to
make arbitrary assertions. In short, Q(v)’s value is
not meaningful when v is ill-behaved. This is why
the necessary property for safety—quorum
intersection of well-behaved nodes after deleting
illbehaved nodes—is unaffected by the slices of ill-
behaved nodes.

Suppose Figure 6 evolved from a threenode FBAS
v1, v2, v3 with quorum intersection to a six-node
FBAS without. When v4, v5, v6 join, they maliciously
choose slices that violate quorum intersection and
no protocol can guarantee safety for V.
Fortunately, {v4,v5,v6} deleting

the bad nodes to yield (V, Q) restores quorum
intersection, meaning at least {v1, v2, v3} can enjoy
safety. Note that deletion is conceptual, for the
sake of describing optimal safety. A protocol should
guarantee safety for v1, v2, v3 without their
needing to know that v4, v5, v6 are ill-behaved.

09© 2024 Diamante Financial Technologies. All Rights Reserved.

v1

v2 v5v3 v6

v4

Figure 6: FBAS lacking quorum intersection

Q(v4) =

Q(v4) =

Q(v4) =

{{v4,v5,v6}}

Q(v1) =

Q(v2) =

Q(v3) =

{{v1,v2,v3}}

v1

v2 v5

v7

v3 v6

v4

Figure 5: III-behaved node v7 can undermine quorum intersection.

Q(v4) =

Q(v4) =

Q(v4) =

{{v4,v5,v6,v7}}

Q(v1) =

Q(v2) =

Q(v3) =

{{v1,v2,v3,v7}}

www.diamcircle.com

https://diamcircle.com/

We capture the fault tolerance of nodes’ slice
selections through the notion of a dispensable set
or D Set. Informally, the safety and liveness of
nodes outside a D Set can be guaranteed
regardless of the behavior of nodes inside the D
Set (Yin et.al. 2013). Put another way, in an
optimally resilient FBAS, if a single D Set
encompasses every ill-behaved node, it also
contains every failed node, and conversely all
nodes outside the D Set are correct. As an
example, in a centralized PBFT system with 3f + 1
nodes and quorum size 2f + 1, any f or fewer nodes
constitute a D Set. Since PBFT in fact survives up to
f Byzantine failures, its robustness is optimal. In the
less regular example of Figure 3, {v1} is a D Set,
since one top tier node can fail without affecting
the rest of the system. {v9} is also a D Set because
no other node depends on v9 for correctness. {v6,
… , v10} is a D Set, because neither v5 nor the top
tier depend on any of those five nodes . {v5, v6} is
not a D Set, as it is a slice for v9 and v10 and
hence, if entirely malicious, can lie to v9 and v10
and convince them of assertions inconsistent with
each other or the rest of the system.

Quorum availability despite B protects against
nodes in B refusing to answer requests and
blocking other nodes’ progress. Quorum
intersection despite B protects against the
opposite— nodes in B making contradictory
assertions that enable other nodes to externalize
inconsistent values for the same slot. Nodes must
balance the two threats in slice selection. All else
equal, bigger slices lead to bigger quorums with
greater overlap, meaning fewer failed node sets B
will undermine quorum intersection when deleted.
On the other hand, bigger slices are more likely to
contain failed nodes, endangering quorum
availability.

Let (V, Q) be an FBAS and B C V be a set of nodes.
We say B is a dispensable set, or D Set, if:   

• (Quorum intersection despite B) (V,Q) B enjoys
quorum intersection, and  
• (Quorum availability despite B) Either V \ B is a
quorum in (V, Q) or B = V

Dispensable Sets (D Sets)

Definition (D Set)

The smallest D Set containing all illbehaved nodes
may encompass wellbehaved nodes as well,
reflecting the fact that a sufficiently large set of ill-
behaved nodes can cause well- behaved nodes The
D Sets in an FBAS are determined a priori by the
quorum function Q. Which nodes are well- and ill-
behaved depends on runtime behavior, such as
machines getting compromised. The D Sets we care
about are those that encompass all illbehaved
nodes, as they help us distinguish nodes that should
be guaranteed correct from ones for which such a
guarantee is impossible. To this end, we introduce
the following terms:

to fail. For instance, in Figure 3, the smallest D Set
containing v5 and v6 is {v5, v6, v9, v10}. The set of
all nodes, V, is always a D Set, as an FBAS (V, Q)
vacuously enjoys quorum intersection despite V
and, by special case, also enjoys quorum availability
despite V. The motivation for the special case is
that given sufficiently many ill-behaved nodes, V
may be the smallest D Set to contain all illbehaved
ones, indicating a scenario under which no protocol
can guarantee anything better than complete
system failure.

Suppose Figure 6 evolved from a threenode FBAS
v1, v2, v3 with quorum intersection to a six-node
FBAS without. When v4, v5, v6 join, they maliciously
choose slices that violate quorum intersection and
no protocol can guarantee safety for V.
Fortunately, {v4,v5,v6} deleting

the bad nodes to yield (V, Q) restores quorum
intersection, meaning at least {v1, v2, v3} can enjoy
safety. Note that deletion is conceptual, for the
sake of describing optimal safety. A protocol should
guarantee safety for v1, v2, v3 without their
needing to know that v4, v5, v6 are ill-behaved

10© 2024 Diamante Financial Technologies. All Rights Reserved.

Figure 8: Key Properties of FBAS nodes

Well-behaved/

ill-behaved

intact/

befouled

correct/

failed

Local property of nodes, independent of other nodes (except

for the validity of slice selection).

Property of nodes given their quorum slices and a particular

set of ill-behaved nodes. Befouled nodes are ill-behaved or

depend, possibly indirectly, on too many ill-behaved nodes.

Property of nodes given their quorum slices, a concrete
protocol, and actual network behavior. The goal of a consensus
protocol is to guarantee correctness for all intact nodes.

www.diamcircle.com

https://diamcircle.com/

node v in an FBAS is intact iff there exists a D Set B
containing all ill- behaved nodes and such that v ⊆
B.

A node v in an FBAS is befouled iff it is not intact.

A befouled node v is surrounded by enough failed
nodes to block its progress or poi- son its state,
even if v itself is well-behaved. No FBAS can
guarantee the correctness of a befouled node.

However, an optimal FBAS guarantees that every
intact node remains correct. Figure 8 summarizes
the key properties of nodes. The following
theorems facilitate analysis by showing that the
set of befouled nodes is always a D Set in an FBAS
with quorum intersection

Let U be a quorum in FBAS (V, Q), let B ⊆ V be a set
of nodes, and let U‘ = U \ B. If U‘≠ ∅ then U t is a
quorum in (V, Q)B.

Proof. Because U is a quorum, every node v ∈ U
has a q ∈ Q(v) such that q ⊆ U. Since U‘ ⊆ U, it
follows that every v ∈ U‘ has a q E Q(v) such that q
\B ⊆ U‘. Rewriting with deletion notation yields ∀ v ∈

 U‘, ∃ q ∈ QB (v) such that q ⊆ U‘, which, because
U‘ ⊆ V \ B, means that U‘ is a quorum in (V, Q)B.

If B1 and B2 are D Sets in an FBAS (V, Q) enjoying
quorum intersection, then B  
= B1 ∩ B2 is a D Set, too

Proof. Let U1 = V \ B1 and U2 = V \ B2. If U1 = ϴ,
then B1 = V and B = B2 (a DSet), so we are done.
Similarly, if U2 = ϴ, then B = B1, and we are done.
Otherwise, note that by quorum availability
despite D Sets B1 and B2, U1 and U2 are quorums in
(V, Q). It follows from the definition that the union
of two quorums is also a quorum. Hence V \ B = U1
u U2 is a quorum and we have quorum availability
despite B.

Definition (intact)

Definition (befouled)

THEOREM 1

THEOREM 2

THEOREM 3

Federated Voting

We must now show quorum intersection despite B.
Let Ua and Ub be any two quorums in (V, Q) B. Let
U = U1 ∩ U2 = U2 \ B1. By quorum intersection of (V,
Q), U = U1 ∩ U2 ≠ ϴ. But then by Theorem 1, U = U2 \
B1 must be a quorum in (V, Q) B1. Now consider that
Ua \ B1 and Ua\ B2 cannot both be empty, or else
Ua \ B1 and Ua \ B2 cannot both be empty or else
Ua \ B = Ua would be. Hence, by Theorem 1, either
Ua \B1 is a quorum in (⟨ V, Q⟩ B) B1 = ⟨ V,Q⟩ B1 or
Ua \ B2 is a quorum in ⟨ V,Q⟩ B2 or both. In the
former case, note that if Ua \ B1 is a quorum in (V,
Q) B1, then by quorum intersection of (V, Q) B1, (Ua
\ B1) ∩ U ≠ ϴ; since (Ua \ B1) ∩ U = (Ua \ B1) \ B2, it
follows that Ua \ B2 ≠ ϴ, making Ua \ B2 a quorum
in (V, Q) B2. By a similar argument, Ub \ B2 must be
a quorum in (V, Q) B2. But then quorum intersection
despite B2 tells us that (Ua \ B2) ∩ (Ub \ B2) ≠ ϴ,
which is only possible if Ua ∩ Ub ≠ ϴ.

In an FBAS with quorum intersection, the set of
befouled nodes is a D Set.

Proof. Let Bmin be the intersection of every D Set
that contains all ill-behaved nodes. It follows from
the definition of intact that a node v is intact if v ∉
Bmin. Thus, Bmin is precisely the set of befouled
nodes. By Theorem 2, D Sets are closed under
intersection, so Bmin is also a D Set.

This section develops a federated voting technique
that FBAS nodes can use to agree on a statement.
At a high level, the process for agreeing on some
statement a involves nodes exchanging two sets of
messages. First, nodes vote for a. Then, if the vote
was successful, nodes confirm a, effectively holding
a second vote on the fact that the first vote
succeeded.

From each node’s perspective, the two rounds of
messages divide agreement on a statement a into
three phases: unknown, accepted, and confirmed.
Initially, a’s status is completely unknown to a node
v—a could end up true, false, or even stuck in a
permanently indeterminate state. If the first

11© 2024 Diamante Financial Technologies. All Rights Reserved. www.diamcircle.com

https://diamcircle.com/

vote succeeds, v may come to accept a. No two
intact nodes ever accept contradictory
statements, so if v is intact and accepts a, then a
cannot be false.

For two reasons, however, v accepting a does not
suffice for v to act on a. First, the fact that v
accepted a does not mean all intact nodes can; a
could be stuck for other nodes. Second, if v is
befouled, then accepting a means nothing—a may
be false at intact nodes. Yet even if v is befouled—
which v does not know—the system may still enjoy
quorum intersection of well- behaved nodes, in
which case, for optimal safety, v needs greater
assurance of a. Holding a second vote addresses
both problems. If the second vote succeeds, v
moves to the confirmed phase in which it can
finally deem a true and act on it.

A correct node in a Byzantine agreement system
acts on a statement a only when it knows that
other correct nodes will never agree to statements
contradicting a. Most protocols employ voting for
this purpose. Well-behaved nodes vote for a
statement a only if it is valid. Well-behaved nodes
also never change their votes. Hence, in
centralized Byzantine agreement, it is safe to
accept a if a quorum comprising a majority of
well-behaved nodes has voted for it. We say a
statement is ratified once it has received the
necessary votes.

In a federated setting, we must adapt voting to
accommodate open membership. One difference
is that a quorum no longer corresponds to a
majority of well-behaved nodes. Another
implication of open membership is that nodes
must discover what constitutes a quorum as part
of the voting process. To implement quorum
discovery, a protocol should specify Q (v) in all
messages from Q (v).

Definition (vote)

Voting with open
membership

Definition (ratify)

THEOREM 4

THEOREM 5

A node v votes for an (abstract) statement a iff   

• v asserts a is valid and consistent with all
statements v has accepted, and   

• v asserts it has never voted against a—i.e., voted
for a statement that contradicts a— and v promises
never to vote against a in the future.

A quorum Ua ratifies a statement a iff every
member of Ua votes for a. A node v ratifies a iff v is
a member of a quorum Ua that ratifies a.

Two contradictory statements a and a- cannot both
be ratified in an FBAS that enjoys quorum
intersection and contains no ill-behaved nodes.

Proof. By contradiction. Suppose quorum U1 ratifies
a and quorum U2 ratifies a- By quorum
intersection, ∃ v ∈ U1 ∩ U2. Such a v must have
illegally voted for both a and a-, violating the
assumption of no ill-behaved nodes.

Let (V, Q) be an FBAS enjoying quorum intersection
despite B, and suppose B contains all ill-behaved
nodes. Let v1 and v2 be two nodes not in B. Let a
and a- be contradictory statements. If v1 ratifies a
then v2 cannot ratify a-.

Proof. By contradiction. Suppose v1 ratifies a and
v2 ratifies a-. By definition, there must exist a
quorum U1 containing v1 that ratified a and quorum
U2 containing v2 that ratified a. By Theorem 1,
since U1 \ ≠ ϴand U2 \ B ≠ ϴ, both must be quorums
in (V, Q)B, meaning they ratified a and a-
respectively in (V, Q)B. But (V, Q)B enjoys quorum
intersection and has no ill-behaved nodes, so
Theorem 4 tells us a and a- cannot both be ratified.

12© 2024 Diamante Financial Technologies. All Rights Reserved. www.diamcircle.com

https://diamcircle.com/

Two intact nodes in an FBAS with quorum
intersection cannot ratify contradictory
statements.

Proof. Let B be the set of befouled nodes. By
Theorem 3, B is a D Set. By the definition of D Set,
(V, Q) enjoys quorum intersection despite B. By
Theorem 5, two nodes not in B cannot ratify
contradictory statements.

In centralized consensus, liveness is an allor-
nothing property of the system. Either a
unanimously well-behaved quorum exists, or else
ill-behaved nodes can prevent the rest of the
system from accepting new statements. In FBA, by
contrast, liveness may differ across nodes. For
instance, in the tiered quorum example of Figure 3,
if middle tier nodes v6, v7, v8 crash, the leaf tier
will be blocked while the top tier and node v5 will
continue to enjoy liveness. An FBA protocol can
guarantee liveness to a node v only if Q(v) contains
at least one quorum slice comprising only correct
nodes. A set B of failed nodes can violate this
property if B contains at least one member of
each of v’s slices. We term such a set B v-blocking,
because it has the power to block progress by v.

An FBAS node v accepts a statement a iff it has
never accepted a statement contradicting a and it
determines that either   

• There exists a quorum U such that v ∈ U and each
member of U either voted for a or claims to accept
a, or  
• Each member of a v-blocking set claims to accept
a.Let v E V be a node in FBAS (V, Q). A set B ⊆ V is v-

blocking iff it overlaps every one of v’s slices—i.e., ∀
q ∈ Q(v), q ∩ B ≠ ϴ.

Let B ⊆ V be a set of nodes in FBAS (V, Q). (V, Q)
enjoys quorum availability despite B iff B is not v-
blocking for any v ∈ V \ B.

THEOREM 6

Accepting Statements

Blocking Sets

Definition (accept).

Definition (v-blocking)

THEOREM 7

Proof. “∀ v ∈ V \ B, B is not v-blocking” is equivalent
to “∀ v ∈ V \ B, ∃ q ∈ Q(v) such that q ⊆ V \ B.” By the
definition of quorum, the latter holds iff V \ B is a
quorum or B = V, the exact definition of quorum
availability despite B. As a corollary, the D Set of
befouled nodes is not v-blocking for any intact v.

When an intact node v learns that it has ratified a
statement, Theorem 6 tells v that other intact
nodes will not ratify contradictory statements. This
condition is sufficient for v to accept a, but we
cannot make it necessary. Ratifying a statement
requires voting for it, and some nodes may have
voted for contradictory statements.   

In Figure 9, for example, v4 votes for a- before
learning that the other three nodes ratified the
contradictory statement a. Though v4 cannot now
vote for a, we would still like it to accept a to be
consistent with the other nodes. A key insight is that
if a node v is intact, then no v-blocking set B can
consist entirely of befouled nodes. Now suppose B
is a v-blocking set and every member of B claims to
accept statement a. If v is intact, at least one
member of B must be, too. The intact member will
not lie about accepting a; hence, a is true and v can
accept it. Of course, if v is befouled, then a might
not be true. But a befouled node can accept
anything and vacuously not affect the correctness
of intact nodes.

Though a well-behaved node cannot vote for
contradictory statements, condition 2 above allows
a node to vote for one statement and later accept a
contradictory one.

13© 2024 Diamante Financial Technologies. All Rights Reserved.

Slice is 3 nodes,

including self

V1

vote a

accept

V3

vote a

accept

V2

vote a

accept

v4

vote ā

Figure 9: v4 voted for ā, which contradicts ratified statement a.

3/4

www.diamcircle.com

https://diamcircle.com/

Two intact nodes in an FBAS that enjoys quorum
intersection cannot accept contradictory
statements.

Proof. Let ⟨ V, Q ⟩ be an FBAS with quorum
intersection and let B be its D Set of befouled
nodes (which exists by Theorem 3). Suppose an
intact node accepts statement a. Let v be the first
intact node to accept a. At the point v accepts a,
only befouled nodes in B can claim to accept it.
Since by the corollary to Theorem 7, B cannot be v-
blocking, it must be that v accepted a through
condition 1. Thus, v identified a quorum U such that
every node claimed to vote for or accept a, and
since v is the first intact node to accept a it must
mean all nodes in U \B voted for a. In other words v
ratified a in ⟨ V, Q ⟩ B.   

Generalizing, any statement accepted by an intact
node in ⟨ V, Q ⟩ must be ratified in ⟨ V, Q ⟩ B.
Because B is a D Set, ⟨ V, Q ⟩ B enjoys quorum
intersection. Because additionally B contains all ill-
behaved nodes, Theorem 4 rules out ratification of
contradictory statements.

Consider an FBAS (V, Q) in which the only quorum
is unanimous consent—i.e., ∀ v, Q(v) = {V}. This
ought to be a conservative choice for safety—
don’t do anything unless everyone agrees. Yet
since every node is v-blocking for every v, any
node can singlehandedly convince any other node
to accept arbitrary statements. The problem is
that accepted statements are only safe among
intact nodes. But, the only condition necessary to
guarantee safety is quorum intersection of well-
behaved nodes, which might hold even in the case
that some well- behaved nodes are befouled. In
particular, when Q(v) = {V}, the only D Sets are ϴ
and V, meaning any node failure befouls the whole
system. By contrast, quorum intersection holds
despite every B ⊆ V.

Another limitation of accepted statements is that
other intact nodes may be unable to accept them.

THEOREM 8

Safety

Definition (agree)

Comparison to Centralized
Voting

Liveness

This possibility makes reliance on accepted
statements problematic for liveness. If a node
proceeds to act on a statement because it accepted
he statement, other nodes could be unable to
proceed in a similar fashion. Consider Figure 10a, in
which node v3 crashes after helping v1 ratify and
accept statement a. Though v1 accepts a, v2 and v4
cannot. In particular, from v2’s perspective, the
situation depicted is indistinguishable from Figure
10b, in which v3 voted for aand is well-behaved but
slow to respond, while v1 is ill-behaved and sent v3
a vote for a- (thereby causing v3 to accept a-) while
illegally also sending v2 a vote for a.

To support a protocol-level notion of liveness in
cases like Figure 10a, v1 needs a way to ensure
every other intact node can eventually accept a
before v1 acts on a. Once this is the case, it makes
sense to say the system agrees on a.

An FBAS (V, Q) agrees on a statement a iff,
regardless of what subsequently transpires, once
sufficient messages are delivered and processed,
every intact node will accept a.

To understand why the above issues arise in
federated voting, consider a centralized Byzantine
agreement system of N nodes with quorum size T.
Such a system enjoys quorum availability with fL =
N − T or fewer node failures. Since any two
quorums share at least 2T −N nodes, quorum
intersection of well-behaved nodes holds up to fS =
2T − N − 1 Byzantine failures.

14© 2024 Diamante Financial Technologies. All Rights Reserved.

Slice is 3 nodes,

including self

Figure 10: Scenarios indistinguishable to v2
when v2 does not see bold messages

V1

vote a

vote ā

V3

vote ā

accept

V2

vote a

v4

vote ā

3/4

V1

vote a

accept

V3

vote a

V2

vote a

v4

vote ā

3/4

a)

b)

www.diamcircle.com

https://diamcircle.com/

Centralized Byzantine agreement systems
typically set N = 3f + 1 and T = 2f + 1 to yield fL = fS
= f, the equilibrium point at which safety and
liveness have the same fault tolerance. If safety is
more important than liveness, some protocols
increase T so that fS > fL .

In FBA, because quorums arise organically,
systems are unlikely to find themselves at
equilibrium, making it far more important to
protect safety in the absence of liveness. Now
consider a centralized system in which, because of
node failure and contradictory votes, some node v
cannot ratify statement a that was ratified by
other nodes. If v hears fS + 1 nodes claim a was
ratified, v knows that either one of them is well-
behaved or all safety guarantees have collapsed.
Either way, v can act on a with no loss of safety.
The FBA equivalent would be to hear from a set B
where B, if deleted, undermines quorum
intersection of well-behaved nodes.

Identifying such a B is hard for three reasons: one,
quorums are discovered dynamically; two, ill-
behaved nodes may lie about slices; and three, v
does not know which nodes are well-behaved.
Instead, we defined federated voting to accept a
when a v-blocking set does.

The v-blocking property has the advantage of
being easily checkable, but is equivalent to hearing
from fL + 1 nodes in a centralized system when we
really want fS + 1. To guarantee agreement among
all wellbehaved nodes in a centralized system, one
merely needs fL + fS + 1 nodes to acknowledge
that a statement was ratified. If more than fL of
them fail, we do not expect liveness anyway.

If fL or fewer fail, then we know fS + 1 nodes
remain willing to attest to ratification, which will in
turn convince all other well-behaved nodes. The
reliance on fS has no easy analogue in the FBA
model. Interestingly, however, fL + fS + 1 = T, the
quorum size, suggesting a similar approach might
work with a more complex justification.

Put another way, at some point nodes need to
believe a statement strongly enough to depend on
its truth for safety.

Statement Confirmation

A centralized system offers two ways to reach this
point for a statement a: ratify a first-hand, or
reason backwards from fS + 1 nodes claiming a was
ratified, figuring safety is hopeless if they have all
lied. FBA lacks the latter approach; the only tool it
has for safety among well-behaved nodes is first-
hand ratification. Since nodes still need a way to
overcome votes against ratified statements, we
introduced a notion of accepting, but it provides a
weaker consistency guarantee limited to intact
nodes.

Both limitations of accepted statements stem from
complications when a set of intact nodes S votes
against a statement a that is nonetheless ratified.
Particularly in light of FBA’s non-uniform quorums,
S may prevent some intact node from ever ratifying
v. To provide v a means of accepting a despite
votes against it, the definition of accept has a
second criterion based on v-blocking sets. But the
second criterion is weaker than ratification,
offering no guarantees to befouled nodes that
enjoy quorum intersection.

Now suppose a statement a has the property that
no intact node ever votes against it. Then we have
no need to accept a and can instead insist that
nodes directly ratify a before acting on it. We call
such statements irrefutable.

15© 2024 Diamante Financial Technologies. All Rights Reserved.

Figure 11: Possible stats of an accepted
statement a at a single node v

VOTED A

VOTED ā

ACCEPTED A

UNCOMMITTED

a is valid

v-blocking set

accepts a

quorum votes

for/accepts a

quorum

confirms a

CONFORMED A

www.diamcircle.com

https://diamcircle.com/

A statement a is irrefutable in an FBAS if no intact
node can ever vote against it. Theorem 8 tells us
that two intact nodes cannot accept contradictory
statements. Thus, while some intact nodes may
vote against a statement a that was accepted by
an intact node, the statement an intact node
accepted a is irrefutable. This suggests holding a
second vote to ratify the fact that an intact node
accepted a.

A quorum Ua in an FBAS confirms a statement a iff ∀
v ∈ Ua, v claims to accept a. A node confirms a iff

it is in such a quorum. Nodes express that they
have accepted statement a by stating “accept (a),”
an abbreviation of the statement, “An intact node
accepted a.” To confirm a means to ratify accept
(a). A well- behaved node v can vote for accept (a)
only after accepting a, as v cannot assume any
particular other nodes are intact. If v itself is
befouled, accept (a) might be false, in which case
voting for it may cost v liveness, but a befouled
node has no guarantee of liveness anyway

Let (V, Q) be an FBAS enjoying quorum
intersection despite B, and suppose B contains all
ill-behaved nodes. Let v1 and v2 be two nodes not
in B. Let a and a- be contradictory statements. If
v1 confirms a, then v2 cannot confirm a-

THEOREM 10

THEOREM 11

Definition (irrefutable)

Definition (confirm)

THEOREM 9

PROOF. First note that accept (a) contradicts
accept (a-)—no well-behaved node can vote for
both. Note further that v1 must ratify accept (a) to
confirm a. By Theorem 5, v2 cannot ratify accept
(a-) and hence cannot confirm a-

Let B be the set of befouled nodes in an FBAS (V, Q)
with quorum intersection. Let U be a quorum
containing an intact node (U <J B), and let S be any
set such that U S V. Let S+ = S\B be the set of intact
nodes in S, and let S− = (V\S)\B be the set of intact
nodes not in S. Either S− = ϴ, or v S− such that S+ is
v-blocking.

Proof: If S+ is v-blocking for some v S−, then we
are done. Otherwise, we must show S− = ϴ. If S+ is
not v-blocking for any v S−, then by Theorem 7
either S− = ϴ or S− is a quorum in (V, Q) B. In the
former case we are done, while in the latter we get
a contradiction: By Theorem 1 U \ B is a quorum in
(V, Q) B. Since B is a D Set, as proven by Theorem 3,
(V, Q) B must enjoy quorum intersection, meaning
S− (U \ B) ϴ. This is impossible, since (U \ B) S and
S− S = ϴ.

If an intact node in an FBAS (V, Q) with quorum
intersection confirms a statement a, then,
whatever subsequently transpires, once sufficient
messages are delivered and processed, every intact
node will accept and confirm a.

U
I

Proof. Let B be the D Set of befouled nodes and let
U ⊈ B be the quorum through which an intact node
confirmed a. Let nodes in U \ B broadcast accept
(a). By definition, any node v, regardless of how it
has voted, accepts a after receiving accept (a) from
a v-blocking set. Hence, these messages may
convince additional nodes to accept a. Let these
additional nodes in turn broadcast accept (a) until a
point is reached at which, regardless of future
communication, no further intact nodes can ever
accept a. At this point let S be the set of nodes that
claim to accept a (where U S), let S+ be the set of
intact nodes in S, and let S− be the set of intact
nodes not in S. S+ cannot be v blocking for any
node in S−, or else more nodes could come to
accept a. By Theorem 10, then, S− = 0, meaning
every intact node has accepted a.

U
I

16© 2024 Diamante Financial Technologies. All Rights Reserved.

ACCEPTED A
a is valid

v-blocking set

accepts a

quorum satisfying u

each votes or accepts a

quorum satisfying u

confirms a

CONFORMED AVOTED A

VOTED ā

UNCOMMITTED

Figure 11: Possible stats of an accepted statement a at
a single node v

Figure 12: Possible system-wide status of a statement a

UNCOMMITTED

A-VALENT A AGREED

STUCK

ā AGREEDā-VALLENT

www.diamcircle.com

https://diamcircle.com/

S+ cannot be v blocking for any node in S−, or else
more nodes could come to accept a. By Theorem
10, then, S− = 0, meaning every intact node has
accepted a.

Figure 11 summarizes the paths an intact node v
can take to confirm a. Given no knowledge, v
might vote for either a or the contradictory a-. If v
votes for a-, it cannot later vote for a, but can
nonetheless accept a if a v-blocking set accepts it.
A subsequent quorum of confirmation messages
allows v to confirm a, which by Theorem 11 means
the system agrees on a.

At some point, one of these two outcomes may
cease to be possible. If no intact node can ever
reject a, we say the system is a valent; conversely, if
no intact node can ever accept a, we say the
system is a-valent.

More concretely, Figure 12 depicts the potential
status a statement a can have system- wide.
Initially, the system is bivalent, by which we mean
there is one sequence of possible events through
which all intact nodes will accept a, and another
sequence through which all intact nodes will reject a
(i.e., accept a statement a- contradicting a).

At the time an FBAS transitions from bivalent to a-
valent, there is a possible out- come in which all
intact nodes accept a. However, this might not
remain the case. Consider a PBFT- like four-node
system {v1, … , v4} in which any three nodes
constitute a quorum. If v1 and v2 vote for a, the
system becomes a-valent; no three nodes can
ratify a contradictory statement. However, if v3
and v4 subsequently vote for a- contradicting a, it
also becomes impossible to ratify a. In this case, a’s
state is permanently indeterminate, or stuck.

As seen in Figure 10a, even once an intact node
accepts a, the system may still fail to reach system-
wide agreement on a. However, by Theorem 11,
once an intact node confirms a, all intact nodes can
eventually come to accept it; hence the system has
agreed upon a. Figure 13 summarizes what intact
nodes know about the global state of a statement
from their own local state.

View-based protocols associate the slots in votes
with monotonically increasing view numbers.

The main challenge of distributed consensus,
whether centralized or not, is that a statement can
get stuck in a permanently indeterminate state
before the system reaches agreement on it.
Hence, a protocol must not attempt to ratify
externalized values directly.   

Should the statement “The value of slot i is x” get
stuck, the system will be forever unable to agree
on slot i, losing liveness. The solution is to craft the
statements in votes carefully. It must be possible to
break a stuck statement’s hold on the question we
really care about, namely slot contents. We call the
process of obsoleting a stuck statement
neutralization.

More concretely, Figure 12 depicts the potential
status a statement a can have system- wide.
Initially, the system is bivalent, by which we mean
there is one sequence of possible events through
which all intact nodes will accept a, and another
sequence through which all intact nodes will reject
a (i.e., accept a statement a- contradicting a). At
some point, one of these two outcomes may cease
to be possible. If no intact node can ever reject a,
we say the system is a valent; conversely, if no
intact node can ever accept a, we say the system is
a-valent.

More concretely, Figure 12 depicts the potential
status a statement a can have system- wide.
Initially, the system is bivalent, by which we mean
there is one sequence of possible events through
which all intact nodes will accept a, and another
sequence through which all intact nodes will reject a
(i.e., accept a statement a- contradicting a).

Liveness and Neutralization

17© 2024 Diamante Financial Technologies. All Rights Reserved. www.diamcircle.com

https://diamcircle.com/

Should consensus get stuck on the ith slot in view n,
nodes recover by agreeing that view n had fewer
than i meaningful slots and moving to a higher
view number. Ballot-based protocols associate the
values in votes with monotonically increasing ballot
numbers.

Should a ballot get stuck, nodes retry the same slot
with a higher ballot, taking care never to select
values that would contradict prior stuck ballots.
This work takes a ballot-based approach, as doing
so makes it easier to do away with the notion of a
distinguished primary node or leader. For example,
leader behavior can be emulated (Lamport 2011).

18© 2024 Diamante Financial Technologies. All Rights Reserved.

Figure 13: What an intact node knows about the status of statement a

Local state

uncommitted unknown (any)

Voted ā unknown (any)

conformed a a agreed

Voted a unknown (any)

accepted a stuc, a-valent, or a agreed

System-wide status of a

www.diamcircle.com

https://diamcircle.com/

Blockchain Architecture

Blockchain Core & Horizon Integration
Network Details

19© 2024 Diamante Financial Technologies. All Rights Reserved.

Stored

cluster DU

Horizon

Horizon

Horizon

Core 1

Core3

Core 2

Core 4

Core

CoreCore

SH
A

 2
5

EN
C

O
D

IN
G

Features Details

www.diamcircle.com

https://diamcircle.com/

Infrastructure Scalability Using Cloud & Load Balancer

Proposed Infrastructure Component Details

Proposed Load Balancer Type

Key features of Application Load Balancers include
� Path-based routing – URL-based routing

policies enable using the same ELB URL to
route to different micro services

� AWS integration – Integrated with many AWS
services, such as ECS, IAM, Auto Scaling, and
Cloud Formation

� Multiple ports routing on the same server

� Application monitoring – Improved metrics and
health checks for the application

Load Balancer reduces the response latency and can achieve approximately 50,000 TPS. With multiple
Load balancer, the TPS can be scaled above 1,50,000 TPS. Considering the below Minimum Hardware

and Network specifications –

20© 2024 Diamante Financial Technologies. All Rights Reserved.

LOAD BALANCER

Rule Listener Rule RuleListener

Target Target

Health CheckTarget Group

Target Target

Health CheckTarget Group

Target Target

Health CheckTarget Group

Application load balancers Classic load balancers

An Application load balancers makes routing decisions at
the application layer(HTTP/HTTPS), supports path based
routing and can route request to one or more ports on each
EC2 instance or container instance in your VPC

A classic load balancers makes routing decisions at either
the transport layer(TCP/SSL) or the application layer (HTTP/
HTTPS) , and supports either EC2- classic or a VPC

Elastic Load Balancing

Select load balancer type

Elastic load balancing supports two types of load balancers : Application load balancers(new) choose the load balancer
types that meets your needs. Learn more

www.diamcircle.com

https://diamcircle.com/

SYSTEM REQUIREMENT SPECIFICATIONS

SECURITY & COMPLIANCE INTEGRATION

Database Protection Network Protection

21© 2024 Diamante Financial Technologies. All Rights Reserved.

SEGMENT mINIMUM REQUIREMENT

M RD
B

 T
ie

r
A

p
 T

ie
r

W
eb

 T
ie

r
Pr

ot
ec

t T
ie

r

M R

IAM

Internet

Gateway

CGW
VPN DX

VPC

Internet

Corpoaret data
center

Existing

Perimeter

Security

Stack

REDSHZ CLUSTER
ENCRYPTION

DYMOND B.
SIMPLE DB SSL

Oracle TDE

ORACLE NNE

EMR JOB
ROW RDES

RDS AUTO MNOR
PACHING

MYSOL MS
SOL SSL

SOL SSL
AIENTS

Database

VPC Public SubnetWeb App Firewall Web App Firewall

Internet

GatewayElastic Load Balancer

Instances Instances
Auto Scaling

VPC Public Subnet

VPC Public Subnet
Amazon

DynamoDB

M

MySQL

Amazon
SNS

VPC

Amazon
SQS

Lambda

function

S3 buckets

Elastic Load Balancer

VPC

Internet

Refactor application to

leverage cloud services

such as Managed

database, Memory

cache, No SQL,

Notification, Queueing,

Serverless and storage

services

Refactor

www.diamcircle.com

https://diamcircle.com/

Instance Protection

VPC Security Groups

22© 2024 Diamante Financial Technologies. All Rights Reserved.

D
B

 T
ie

r
A

p
 T

ie
r

W
eb

 T
ie

r
Pr

ot
ec

t T
ie

r

IAM

VPN

SSH Keys

Baazion Hoz

Auto Scaling

Audfrag Load
Desco

AMb

Soor trapping

Managed
Encrypoon

Panomation
Testing

Hoz Security
Sofware

Instance

CGW
VPN DX

VPC

Internet

Corpoaret data
center

Existing
Perimeter
Security

Stack

Only Specific ports

open to the internet

Sync with on-
premises database

All other internet ports
blocked by default

Staff can limit app tier
access to a bastion/

management tier

EC2 EC2 EC2

Web tier
Application Tier

Database Tier

www.diamcircle.com

https://diamcircle.com/

To intensify the experience of each and every consortium member, Diamante Blockchain has teamed up
with industry experts and technical consultants, and the pioneers in the Blockchain industry. This
collaboration will facilitate smooth and flawless functioning within the Consortium using the decentralized
ledger, a boon of the Blockchain Network and technology (Holotiuk, Pisani and Moormann 2017).

PayCircle and
CreditCircle on

the Diamante Net

PayCircle
Introduction

Product Description

Store Digital Assets & Fiat

Send/Receive Digital Assets & Fiat

Digital Security

Product Benefits

The following paragraphs reflect the prospectus
for the implementation of the Diamante
Blockchain’s application, PayCircle. PayCircle is a
DeFi payment application built for global
businesses and individuals. PayCircle allows
companies and individuals to Custody, Send &
Receive multi-currency (USD/AUD/CAD/EUR/
JPY) Fiat and Digital assets (BTC, ETH, ERC20
based tokens and stable coins like USDT) anytime
& anywhere, 24/7 and 365 days using Blockchain
(Piazza 2017).

PayCircle is a DeFi payment application built for
global businesses and individuals using Blockchain.

� Utilizing blockchain as technological
infrastructure, PayCircle allows relatively
speedy and low-cost transaction settlements.

� Ensures enhanced security of the financial
contracts and facilitates contract automation
utilizing blockchain immutability.

� Forges a bond of reliability through advanced
visibility of the transactions while guaranteeing
zero payment failure.

� PayCircle users remain in absolute control of
their assets without any interference from any
intermediary through complete possession of
their private keys within the PayCircle
ecosystem.

� FDIC insured USD custody.

� Custody your Digital Assets and Fiat in a single
wallet.

� Send or receive Digital Assets and Fiats to your
family and customers globally.

� PayCircle enables transactions that have
absolute digital security from source till
settlement.

Key Features of Individual /
Business Account

23© 2024 Diamante Financial Technologies. All Rights Reserved. www.diamcircle.com

https://diamcircle.com/

Load Digital Assets and Fiat

Instant Settlement

Fraud Protection

Open-Source

Global Payments

Cost-effective Platform

Best Digital Asset Prices

Multi-Asset Support

� Load Fiat directly from your bank account via
ACH / Wire / International Wire / Swift / Checks
/ Credit Cards / Debit Cards and digital assets
now from any wallet

� PayCircle ensures fast and easy transaction
settlements across the world with industry best
conversion rates.

� PayCircle has a novel network design that
guarantees payment value against any fraud
attempt, including hack or breach.

� The payment infrastructure is built on top of an
open-source protocol, which is validated by
security audits.

� By enabling PayCircle once, one can start
accepting payments in multiple currencies from
across the world without having to pay any
foreign exchange fees.

� There is no hidden or additional fee charged,
and the transaction fees are the lowest in the
industry.

� Enables individuals to buy digital assets at the
best market price from OTC markets and
affiliated exchanges.

� The ability to manage BTC, ETH, BCH, LTC,
and all your ERC-20 tokens

All-in-One Keep-Safe for
Digital Assets
PayCircle allows you to take complete control of all
your digital assets enabling storage on your device

Secure Storage
� All your keys are protected with Secure Enclave

and advanced authentication technology.

CreditCircle
Introduction
CreditCircle is a DeFi finance product on Diamante
Net. It’s a decentralized finance application where
individuals and businesses can opt for loans and
credit at a relatively low-interest rate compared to
traditional financing. To opt for loans on
CreditCircle, users will have to join the Diamante
Consortium platform.

Members of the Diamante Consortium platform will
be able to access credit in a number of ways. In the
first instance, consortium members will be able to
apply for a credit facility directly from Diamante. In
addition to Diamante providing credit to
consortium members, traditional lenders and credit
providers such as banks will be able to access the
Diamante platform by paying a platform fee, which
will, in turn, allow them to access data and connect
with potential borrowers directly.

Diamante would have two financing options, one
being a peer-to-peer (p2p) lending platform, and
the other is asset-backed financing.

Members’ credit ratings will be mapped using high-
end technical and financial algorithms that will
assist the consortium in approving the line of credit
to its members. Before issuing the line of credit to
the specific consortium member, diamonds would
be used as a means of collateral, which would be
secured from the individuals seeking the credit.

Diamante has a concept of asset-backed financing
where diamonds would be used as an asset that
would act as collateral. For example, if a company
is in a cash crunch and requires a credit of $1
million, the company would place $2 million worth
of diamonds on to a 3rd party safe deposit vault,
which would be valued by the Diamante appraisal
team. All these transactions would be recorded via
smart contracts on to the Diamantes network, i.e.,
Diamante Net.

24© 2024 Diamante Financial Technologies. All Rights Reserved. www.diamcircle.com

https://diamcircle.com/

Product Description

Product Benefits

Product Features
CreditCircle, a corporate finance platform is
Diamante Blockchain’s product to opt for loans
and credit at a relatively low-interest rate.

� Opt loans at relatively low-interest rates

� Flexible financing options based on credit
ratings

� Users can escrow their stocks, bonds, luxury
commodities, and digital assets to avail of
financing

� Peer-to-peer (p2p) lending, where individuals
and financing institutions from around the world
can get access to a large number of customers
globally

� Instant and easy access to traditional lenders
and credit providers

� Smart contract records for safe and secured
credits

25© 2024 Diamante Financial Technologies. All Rights Reserved. www.diamcircle.com

https://diamcircle.com/

LIST OF REFERENCES
� Cachin, C., 2016, July. Architecture of the hyperledger Blockchain fabric. In Workshop on Distributed

Cryptocurrencies and Consensus Ledgers (Vol. Cachin, C., Osborne, S.S., Sorniotti, A. and Vukolic, M.,
2017. Blockchain and consensus protocols

� Castro, M. and Liskov, B., 1999, February. Practical Byzantine fault tolerance. In OSDI (Vol. 99, pp.  
173 186)

� Holotiuk, F., Pisani, F. and Moormann, J., 2017. The impact of Blockchain technology on business
models in the payments industry.

� Lamport, L., 1998. The part time parliament. ACM Transactions on Computer Systems (TOCS) TOCS),
16 (pp.133 169.

� Lamport, L., 2011, September. Brief announcement: Leaderless byzantine paxos. In International
Symposium on Distributed Computing (pp. 141 142). Springer, Berlin, Heidelberg.

� Stellar.org. (2019). [online] A vailable at: https://www.stellar.org/papers/stellar consensus
protocol.pdf [Accessed 7 Feb. 2019].

� Oki, B.M. and Liskov, B.H., 1988, January. Viewstamped replication: A new primary copy method to
support highly available distributed systems. In Proceedings of the seventh annual ACM Symposium on
Principles of distributed computing (pp. 8 17). ACM

� Oki, B.M. and Liskov, B.H., 1988, January. Viewstamped replication: A new primary copy method to
support highly available distributed systems. In Proceedings of the seventh annual ACM Symposium on
Principles of distributed computing (pp. 8 17). ACM

� Piazza, F.S., 2017. Bitcoin and the Blockchain as Possible Corporate Governance Tools: Strengths and
Weaknesses. Bocconi Legal Papers, 9 p.125

� Pires, M.E.B., 2017. Generalized Paxos made Byzantine, Visigoth and Less Complex.

� Stolz, D. and Wattenhofer, R., 2016. Byzantine agreement with median validity. In LIPIcs Leibniz
International Proceedings in Informatics (Vol. 46). Schloss Dagstuhl Leibniz Zentrum fuer Informatik.

� Stolz, D. and Wattenhofer, R., 2016. Byzantine agreement with median validity. In LIPIcs Leibniz
International Proceedings in Informatics (Vol. 46). Schloss Dagstuhl Leibniz Zentrum fuer Informatik.

� Van Renesse, R., Schiper, N. and Schneider, F.B., 2015. Vive la différence: Paxos vs.

� Yin, J., Martin, J.P., Venkataramani, A., Alvisi, L. and Dahlin, M., 2003. Separating agreement from
execution for byzantine fault tolerant services. ACM SIGOPS Operating Systems Review, 37 (pp.253
267.

26© 2024 Diamante Financial Technologies. All Rights Reserved. www.diamcircle.com

https://diamcircle.com/

www.diamcircle.com
 info@diamcircle.com

© 2024 Diamante Financial Technologies. All Rights Reserved.

https://diamcircle.com/
mailto:info@diamcircle.com
https://diamcircle.io/privacy-policy/
https://diamcircle.io/user-agreement/
https://diamcircle.io/terms-of-use/
https://diamcircle.io/general-data-protection-regulation-policy/

